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Abstract. We extend the notion of quasi-exactly solvable (QES) models from potential ones
and differential equations to Bose systems. We obtain conditions under which algebraization of
part of the spectrum occurs. In some particular cases simple exact expressions for several energy
levels of an anharmonic Bose oscillator are obtained explicitly. The corresponding results do
not exploit perturbation theory and include the strong-coupling regime. A generic Hamiltonian
under discussion cannot, in contrast to QES potential models, be expressed as a polynomial in
generators of sl2 algebra. The suggested approach is extendable to many-particle Bose systems
with interaction.

1. Introduction

An anharmonic oscillator represents one of the ‘eternal’ problems and models of theoretical
physics. It serves as a basis for checking different approximate methods in quantum mechanics,
the simplified counterpart of field-theoretical models etc. Apart from this, it is of interest
on its own since the real world certainly deviates from the idealized picture of harmonic
oscillators due to interaction between them and self-interaction. In so doing, the notion
‘anharmonic oscillator’ is mainly applied to at least two different entities. First, it refers
to some potential power models in which the potential contains terms with higher degrees with
respect to coordinate. (The literature on this subject is so vast that it is even rather difficult to
indicate some concrete references—let us mention here only the reviews [1, 2], the book [3]
and references therein.) Second, it is related to quantum Bose models with interaction or self-
interaction. In both cases the Schrödinger equation cannot be solved exactly. However, for the
first case it was realized that, in spite of the impossibility of finding the whole energy spectrum
exactly, in some particular cases (for instance, a sextic oscillator with a special relationship
between coefficients [4]) one can find part of the spectrum (more precisely, algebraization of
part of the spectrum occurs). Such a system is an example of so-called quasi-exactly solvable
(QES) [5] ones, which includes a rather vast class of potentials and has direct physical meaning,
first of all related to properties of magnetic systems [6].

The aim of this paper is to extend the notion of QES systems to Bose systems and apply
the QES approach to anharmonic Bose oscillators. Strange as it may seem, the approach to
Bose oscillators in the spirit of QES models was, to the best of our knowledge, absent from
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the literature before in spite of the developed apparatus relating realization of Lie algebras in
Fock space and properties of differential equations [7]. Meanwhile, the QES approach to Bose
systems deserves treatment on its own due to an obviously wide area of physical applications.

In the coordinate-momentum representation

a → d

dx
a+ → x. (1)

The Bose Hamiltonian, polynomial with respect to a, a+ becomes a differential operator and
any possible invariant subspace is spanned on the polynomial basis. For the systems of such a
kind there exists the Turbiner theorem, that states that the most general QES can be expressed
in terms of generators of sl2 algebra

J + = a+2a − Na+ J− = a J 0 = a+a − N

2
(2)

(the relations (2) are known in magnetism theory as the Dayson–Maleev representation [8]).
Nevertheless, the problem of finding QES Bose Hamiltonians cannot be exhausted by a simple
reference to this theorem since, as we shall see below, for the typical case under discussion, the
conditions of validity of this theorem are not fulfilled, so Hamiltonians (except some special
cases) cannot be expressed in terms of sl2 generators at all. This is the point in which Bose
QES systems qualitatively differ from potential QES models whose Hamiltonians are built
with the help of sl2 generators, realized as differential operators [5].

Apart from this, even in the cases when Turbiner’s theorem does apply to Bose
Hamiltonians, it is much more convenient to formulate the conditions of QES solvability
in terms of coefficients of an original Bose Hamiltonian directly without resorting to operators
J i at the intermediate stage.

2. Basic formulae

Consider the Hamiltonian

H = H0 + V H0 =
p0∑
p=1

εp(a
+a)p V =

s0∑
s=0

As[(a
+a)sa2 + (a+)2(a+a)s]. (3)

Throughout the paper we assume that all coefficients of the Hamiltonian are real. For
Hamiltonian (3) to have a well defined ground state, one should take p0 > s0 +2 independently
of the relations between coefficients or p0 = s0 + 2 provided εp0 � 2As0 . In the x-
representation (1) we obtain

Hx =
p0∑
p=1

εp

(
x

d

dx

)p

+
s0∑
s=0

As

[(
x

d

dx

)s d2

dx2
+ x2

(
x

d

dx

)s]
. (4)

We are interested in the solutions of the Schrödinger equation of the type |ψ〉 = ∑N
n=0 bn|n〉,

where |n〉 is the state with n particles: a+a|n〉 = n|n〉. For Hamiltonian (4) subspaces with
even and odd are not mixed. Therefore, it makes sense to consider them separately. In the
x-representation (1) the wavefunction of even states � = ∑

l=0 al�l , �l ≡ x2l .
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It follows from (4) that

Hx�l = αl�l+1 + βl�l−1 + γl�l l = 0, 1, . . . , L

αl =
s0∑
s=0

As(2l)
s

βl =
s0∑
s=0

As2l(2l − 1)(2l − 2)s

γl =
p0∑
p=1

εp(2l)
p.

(5)

We are interested in the possibility of the existence of the invariant basic F2L =
{1, x2, x4, . . . , x2L}. The condition of cut-off at l = L reads αL = 0.

For odd states the invariant basic F2M+1 = {x, x3, . . . , x2M+1}, �̃m = x2m+1 and

Hx�̃m = α̃m�̃m+1 + β̃m�̃m−1 + γ̃m�̃m m = 0, 1, . . . ,M

α̃m =
s=s0∑
s=0

As(2m + 1)s

β̃m =
s=s0∑
s=0

As(2m + 1)2m(2m − 1)s

γ̃m =
p=p0∑
p=1

εp(2m + 1)p.

(6)

The subspace with m � M is invariant with respect to the action of H provided α̃M = 0.
The procedure described above is, in fact, nothing other than the Bose version of QES

models, applied to an anharmonic oscillator. Now we would like to point out why for the case
under consideration Turbiner’s theorem, in general, does not hold, so our formulae cannot
considered as particular cases of its realization. The point is that Turbiner’s theorem implies
that the space of all polynomials of a given degree is invariant with respect to J i : FN = {1,
x, x2, . . . , xN }. Meanwhile, in our case, only subset F2N (for even states) or F2M+1 (for odd
ones) is invariant, whereas the set FN is not. Only in particular cases, when both conditions
αL = 0 (for even states) and α̃M = 0 (for odd states) are satisfied simultaneously, does the
Hamiltonian become an algebraic combination of J i .

In contrast to [11], where differential equations were the object of research, in our paper
the coordinate-momentum representation (1), in which the operator a becomes differential, is
used as an useful device at an intermediate stage only. In principle, one could rely directly
on the known formulae of the action of operators a, a+ on a state with a definite number of
particles without resorting to the representation (1).

3. Examples

Consider the Hamiltonian whose off-diagonal part reads

V = A0(a
2 + a+2) + A1[(a+a)a2 + a+2(a+a)] + A2[(a+a)2a2 + a+2(a+a)2] s0 = 2. (7)

Now

αl = A0 + 2lA1 + (2l)2A2

βl = 2l(2l − 1)[A0 + (2l − 2)A1 + (2l − 2)2A2]
(8)

α̃m = A0 + (2m + 1)A1 + (2m + 1)2A2

β̃m = (2m + 1)2m[A0 + (2m − 1)A1 + (2m − 1)2A2].
(9)
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First, consider even states. In the simplest nontrivial particular case the invariant subspace is
two-dimensional, L = 1. Then

α1 = A0 + 2A1 + 4A2 = 0 (10)

� = a0�0+a1�1 and it follows from the Schrödinger equationH� = E� that −Ea0+β1a1 =
0, α0a0 + (γ1 − E)a1 = 0. Taking also into account (10), we obtain

E = γ1

2
±

√
γ 2

1

4
+ 8(A1 + 2A2)2. (11)

In a similar way, one obtains for the three-dimensional subspace (L = 2)

E3 − (γ1 + γ2)E
2 + [γ1γ2 − 16(5A2

1 + 52A1A2 + 140A2
2)]E + 32γ2(A1 + 4A2)

2 = 0. (12)

If A1 = A2 = 0, the low-lying energy levels of a harmonic oscillator are reproduced
from (11), (12). The equation (12) can be solved exactly in the particular case A1 = −4A2:

E = 0, γ1+γ2

2 ±
√

(γ1−γ2)2

4 + 192A2
2. For odd states in the simplest nontrivial case M = 1 we

have

α̃1 ≡ A0 + 3A1 + 9A2 = 0 α̃0 = A0 + A1 + A2 β̃1 = 6α̃0

E = γ̃0 + γ̃1

2
±

√
(γ̃0 + γ̃1)2

4
+ α̃0β̃1 = γ̃0 + γ̃1

2
±

√
(γ̃0 + γ̃1)2

4
+ 24(A1 + 4A2)2.

(13)

The conditions αL = 0 and α̃M = 0 are different, so in general the invariant subspace
exists only for even or only for odd states. However, it may happen that both conditions are
fulfilled. Thus, for L = 1 = M the compatibility of (10) and (13) demands A1 = −5A2,
A0 = 6A2. Then we have the simple explicit solutions for four levels of Hamiltonian (3):

E = γ̃0 + γ̃1

2
±

√
(γ̃0 + γ̃1)2

4
+ 24A2

2

γ1

2
±

√
γ 2

1

4
+ 72A2

2.

4. Explicit solution for two levels

If the coefficient αL = 0, the dimension of the invariant space is L + 1. Meanwhile, it may
happen that, in addition, βL−1 = 0. Then the two-dimensional subspace spanned on �L and
�L−1 is singled out from the L + 1 subspace that gives explicit simple exact solutions for two
levels, however large L would be. For Hamiltonian (7) it follows from (8) that in this case

A0 = 2L(2L − 3)A2 A1 = A2(3 − 4L)

αL−1 = −2A2 βL = −4L(2L − 1)A2

E± = γL + γL−1

2
±

√
(γL − γL−1)2

4
+ αL−1βL

= γL + γL−1

2
±

√
(γL − γL−1)2

4
+ 8L(2L − 1)A2

2.

(14)

A similar procedure can be repeated for odd states.

5. Generalization

The obvious generalization of QES Bose Hamiltonians arises if the Hamiltonian itself does
not have a ‘canonical’ structure under the description but can be reduced to it with the help
of the transformation HK = KH ′, where the operator K is some function of a and a+. In
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particular, it can realize u–v Bogolubov transformations. In what follows we assume that such
transformations, if needed, are already performed, so we try to generalize such ‘canonical’
forms themselves. Consider the action of Hamiltonian H = H0 + V with H0 from (3) and

V =
s0∑
s=0

k0∑
k=1

Ask[(a+a)sakq + (a+)kq(a+a)s] (15)

on the functions �n = xqn, where q > 0 is an integer, n = 0, 1, . . . :

Hx�n = γn�n +
k0∑
k=1

αnk�n+k +
k0∑
k=1

βnk�n−k

γn =
p0∑
p=1

εp(nq)
p

αnk =
s0∑
s=0

Ask(nq)
s

βnk =
s0∑
s=0

Asknq(nq − 1) · · · (nq − kq + 1)(nq − kq)s n � k

βnk = 0 n < k.

(16)

Provided the conditions of cut-off at n = N are fulfilled, this Hamiltonian can possess
the invariant subspace F = {�n, n = 0, 1, . . . , N}, so the wavefunction of the system
� = ∑N

n=0 an�n includes the states with nq (n = 0, 1, . . . , N) particles only. The conditions
under discussion read now as follows. For any given k we must demand αN+1−i,k = 0,
i = 1, . . . , k, so we have k conditions. As k = 1, 2, . . . , k0, the total number of conditions
is equal to n1 = (k0+1)k0

2 . On the other hand, the number of coefficients Ask is equal to
n2 = (s0 + 1)k0. The system can be QES if n2 > n1, so 2s0 � k0. In particular, in
accordance with examples considered above, one can always adjust the coefficients properly,
if k0 = 1.

The approach considered in this paper allows extension to many-particle systems. In
particular, for two pairs of Bose operators (a, a+), (b, b+) one may take

H =
∑
i

H
(a)
i h

(b)
i (17)

where Hamiltonians Hi and hi are built from operators a, a+ and b, b+, correspondingly, and
have the structure (3) or (15).

6. Concluding remarks

During recent years, the class of QES was extended considerably to include two- and
many-dimensional systems, matrix models [9], the QES anharmonic oscillator with complex
potentials [6, p 192], [10] etc. Meanwhile, it turned out that, apart from these (sometimes
rather sophisticated and exotic) situations, quasi-exact solvability exists in everyday life around
us where anharmonic Bose oscillators can be met at every step. In particular, the results
obtained can be exploited in solid state or molecular physics, the theory of magnetism etc. The
approach suggested in this paper shows the line along which many second-quantized models
with algebraization of part of the spectrum can be constructed. This approach can be also
extended to systems with interaction of subsystems of different nature—in particular, between
spin and Bose operators, Bose and Fermi oscillators.
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